
Team Visualizer

Dual-Pi Visualizer Design Document

Table of Contents
1 Introduction 1

1.1 Purpose and Scope 2
1.2 Target Audience 2
1.3 Terms and Definitions 2

2 Design Considerations 2
2.1 Constraints and Dependencies 3
2.2 Methodology 3

3 System Overview 3

4 System Architecture 4
4.1 Overview 4
4.2 OnBoot 5
4.3 PiMan 5
4.4 VLCMan 5
4.5 ProjMMan 5
4.6 VideoMan 5
4.7 InputHandler 5
4.8 EtherTalki 6
4.9 UserInput 6
4.10 ErrorHandling 6
4.11 LEDBlinki 6

Team Visualizer

1 Introduction
This document details the design considerations for the Dual-Pi Visualizer project, including its
constraints and dependencies, methodology, a high-level system overview, and an overview of
the system architecture design. The introductory section details the scope and purpose of this
document, its intended audience, and definitions of some terminology used throughout.

1.1 Purpose and Scope
The purpose of this document is to provide the details of how the Dual-Pi Visualizer project will
achieve the functionality required of it.

1.2 Target Audience
The target audience for this document are stakeholders and developers. This document is
intended for all who are involved in the completion of this project, and therefore, its scope is
broad.

1.3 Terms and Definitions
The following terms will be utilized throughout this document.

Term Definition

User A client that interacts with the Pi

Use Cases The interaction between the product and the users of the product.

Stakeholder A person that is involved in the system, that is not part of
development.

Milestone The date on which a work product will be completed.

Deliverable A measurable outcome of the project.

GUI Graphical User Interface

Functional Requirement An action that the product must be able to perform.

Nonfunctional
Requirement

Specifications of the properties of the product.

Team Visualizer

2 Design Considerations
This section is for describing the considerations that will need to be taken in designing the
Dual-Pi Visualizer project in order for it to meet all of its functionality requirements.

2.1 Constraints and Dependencies
In order to meet the minimal requirements for the creation of the Dual-Pi Visualizer project, it
must:

● 222
● Sync up with at least one other Raspberry Pi, at which point both will be performing the

exact same actions.
● Be capable of being controlled solely with the various buttons available on a standard

wireless mouse, with no interface.
● Automatically power down between 7am and 7pm.

2.2 Methodology
The development of the Dual-Pi Visualizer project will require the usage of VLC’s API in order to
deal with a majority of the program’s functionality, such as populating video-based playlists
automatically, trimming intros and outros from videos greater than a certain length, and playing
them in full-screen mode across two different devices simultaneously.

This project will also require the usage of shell commands from within it in order to automatically
power itself down between 7am and 7pm.

3 System Overview
The diagram below shows a high-level abstraction of the entire Dual-Pi Visualizer project, and
its purpose is to prepare one for the system architecture portion of this design document. The
system that makes up the entirety of the Dual-Pi Visualizer project is comprised of the following
components:

● Parent Handler​ - Necessary for dealing with having multiple Pi units carrying out the
same tasks. Whichever Pi unit most recently received mouse input becomes the parent,
and all other Pi units are children which perform the same actions as the parent.

● Input Handler​ - Deals with the various key bindings available to the user.
● VLC Manager ​- Deals with VLC API and handles playlist populating, video trimming,

audio visualization, and turns user input into actual VLC-related actions such as
proceeding to the next video in the playlist.

Team Visualizer

● Shutdown Handler​ - Shutdown can occur due to power loss, pressing the left and right
mouse buttons at the same time, or due to the time being between 7am-7pm. We need
to ensure that shutdown is handled properly.

There’s a bunch of other components not in this overview or the diagram below that will show
up in the next section.

4 System Architecture
As briefly introduced in the previous section regarding the Dual-Pi Visualizer project’s system
overview, this section dives deeper into these systems and the components that make up these
systems on a lower-level scale.

4.1 Overview
Below is a diagram of the system architecture plan. Beyond this section is a detailed
explanation behind each of the components in this diagram.

https://www.draw.io/?page-id=9f46799a-70d6-7492-0946-bef42562c5a5&scale=auto#G1sEuOp8Y5r-ZLQSwnmYqs2yShp28NClKu

Team Visualizer

Team Visualizer

https://www.draw.io/?page-id=SaOgZ41d11M_EuJ3UGCg&scale=auto#G1qNJHiMY0qZH9WIdl2iE4wP6LuSR33PVW

Team Visualizer

4.2 OnBoot
Handles the startup of our program and handling of any processes that must take place in
preparation. The OnBoot will disable all wifi and bluetooth connections to the Pi unit. This will
begin with the powering up of the RaspberryPi, without any user inputs needed.

4.3 PiMan
PiMan manages all functionality of the Pi and our program’s processes post-boot. Retains
boolean representation of status as “Leader” or “Follower”, and will run all functionality based on
that designation. If “leader”, listens for mouse inputs and sends commands out through ethernet
via the InputOutputHandler. If “follower”, listens for ethernet data passed from the
InputOutputHandler and follows those commands.

4.4 VLCMan
The VLC Manager component will deal directly with the VLC API necessary to populate a
playlist with the videos in the folder we direct it to, cutting the intro and outro of videos which
exceed a certain length, and translate user input into VLC-specific commands such as skipping
to the next video, or altering the speed at which the video is playing.

4.5 ProjMMan
The ProjectM Manager will deal directly with the ProjectM audio visualizer. Starting/stopping
visualizations. Starting/stopping music file playback (used only to effect visualization effects).

4.6 VideoMan
Manages Videos through the VLC program. Creation of the video playlist. Starting/stopping
videos. Determining where in videos to start playback. Disabling of all captions and text in
videos.

4.7 InputOutputHandler
Manages EtherTalki and UserInput, passing messages back to PiMan.

Team Visualizer

4.8 EtherTalki
Receives/interprets input messages from other Raspberry Pis through the ethernet connection
and passes command back through the InputHandler. I/O between Pis go through TCP/IP
network utility. Leader sends status.

4.9 UserInput
Receives/interprets input messages from user’s mouse/keypad control and passes command
back through the InputHandler.

4.10 ErrorHandling
Interprets Error codes for the PiMan and passes back the results for PiMan to handle. Indicates
fatal/significant errors displayed through physical LEDs on the Pi unit.

4.11 LEDBlinki
The lightup of LEDs physically attached to the RaspberryPi unit that will indicate error status of
our program.

4.12 ClockMan
Manages information from the physical clock unit. Has a PowerDown boolean that is true if the
time is between 7am and 7pm, to let the PiMan know to go into shut down mode.

